This week

1. Section 3.1: tangents and the derivative at a point
2. Section 3.2: the derivative as a function
3. Section 3.4: velocity
The (angle of) **inclination** is the angle θ that ℓ makes with the x-axis.

- Turning counterclockwise means $\theta > 0$.
- Turning clockwise means $\theta < 0$.

Inclination

1.1

UNIVERSITY OF TWENTE

Introduction to Mathematics and Modeling

Lecture 3: Differentiation
The **(angle of) inclination** is the angle θ that ℓ makes with the x-axis.

- The angle is measured from the positive x-axis to ℓ.
The (angle of) inclination is the angle θ that ℓ makes with the x-axis.

The angle is measured from the positive x-axis to ℓ.

Turning counterclockwise means $\theta > 0$.

Turning clockwise means $\theta < 0$.

\[y \]
\[x \]
The (angle of) inclination is the angle θ that ℓ makes with the x-axis.

The angle is measured from the positive x-axis to ℓ.

- Turning counterclockwise means $\theta > 0$.
- Turning clockwise means $\theta < 0$.
The slope of \(\ell \) is defined as \(\tan \theta = \frac{\Delta y}{\Delta x} \).
The slope of a line

- The **slope of** ℓ is defined as $\tan \theta = \frac{\Delta y}{\Delta x}$.
- This holds for every choice P_1 and P_2, as long as $P_1 \neq P_2$.
The slope of a line

The slope of \(\ell \) is
\[
\tan \theta = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}.
\]
The slope of a line

The slope of ℓ is $\tan \theta = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$.

This holds for every choice $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$, as long as $P_1 \neq P_2$.

Let ℓ be the line through $P = (x_0, y_0)$ with slope m, then for every point $(x, y) \neq P$ on ℓ we have

$$m = \frac{y - y_0}{x - x_0}.$$
Equation of a line through a point with given slope

Let \(\ell \) be the line through \(P = (x_0, y_0) \) with slope \(m \), then for every point \((x, y) \neq P \) on \(\ell \) we have

\[
m = \frac{y - y_0}{x - x_0}.
\]

The equation of the line through \(P \) and with slope \(m \) is

\[
y = m(x - x_0) + y_0.
\]
Let \(\ell \) be the line through with slope \(m \) and with \(y \)-intercept \(b \), then \(\ell \) passes through \((0, b)\).
Let \(\ell \) be the line through with slope \(m \) and with \(y \)-intercept \(b \), then \(\ell \) passes through \((0, b)\).

The equation of \(\ell \) is

\[y = m(x - 0) + b = mx + b. \]
Let \(\ell \) be the line through \(P_1 = (x_1, y_1) \) and \(P_2 = (x_2, y_2) \) where \(P_1 \neq P_2 \), then the slope of \(\ell \) is

\[
m = \frac{y_2 - y_1}{x_2 - x_1}.
\]
Let \(\ell \) be the line through \(P_1 = (x_1, y_1) \) and \(P_2 = (x_2, y_2) \) where \(P_1 \neq P_2 \), then the slope of \(\ell \) is

\[
m = \frac{y_2 - y_1}{x_2 - x_1}.
\]

The equation of the line through \(P_1 \) and \(P_2 \) is

\[
y = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) + y_1.
\]
The horizontal line with y-intercept b has slope 0 and therefore is described by the equation

$$y = b.$$
The horizontal line with y-intercept b has slope 0 and therefore is described by the equation
\[y = b. \]

The vertical line with x-intercept a has slope ∞ and is described by the equation
\[x = a. \]
Assignment: IMM1 - Tutorial 3.1.
The derivative of a function \(y = f(x) \)

We define the **derivative** \(f(x) \) at \(x_0 \) as

\[
f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.
\]

The number \(f'(x_0) \) can be interpreted as:

- the slope of the graph of \(y = f(x) \) at the point \((x_0, f(x_0))\);
- the slope of the tangent line to the graph of \(y = f(x) \) at the point \((x_0, f(x_0))\);
- the rate of change of \(f(x) \) at the point \(x_0 \).
Example: the derivative of $f(x) = x^2$ at 1

For $f(x) = x^2$ we have

<table>
<thead>
<tr>
<th>h</th>
<th>$1 + h$</th>
<th>$f(1)$</th>
<th>$f(1 + h)$</th>
<th>$\frac{f(1 + h) - f(1)}{h}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
Example: the derivative of \(f(x) = x^2 \) at 1

For \(f(x) = x^2 \) we have

\[
\begin{array}{|c|c|c|c|c|}
\hline
h & 1 + h & f(1) & f(1 + h) & \frac{f(1 + h) - f(1)}{h} \\
\hline
1 & 2 & 1 & 4 & 3 \\
.5 & 1.5 & 1 & 2.25 & 2.5 \\
\hline
\end{array}
\]
Example: the derivative of \(f(x) = x^2 \) at 1

For \(f(x) = x^2 \) we have

<table>
<thead>
<tr>
<th>(h)</th>
<th>(1 + h)</th>
<th>(f(1))</th>
<th>(f(1 + h))</th>
<th>(\frac{f(1 + h) - f(1)}{h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>.5</td>
<td>1.5</td>
<td>1</td>
<td>2.25</td>
<td>2.5</td>
</tr>
<tr>
<td>.25</td>
<td>1.25</td>
<td>1</td>
<td>1.5625</td>
<td>2.25</td>
</tr>
</tbody>
</table>
Example: the derivative of $f(x) = x^2$ at 1

For $f(x) = x^2$ we have

<table>
<thead>
<tr>
<th>h</th>
<th>$1 + h$</th>
<th>$f(1)$</th>
<th>$f(1 + h)$</th>
<th>$\frac{f(1 + h) - f(1)}{h}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>.5</td>
<td>1.5</td>
<td>1</td>
<td>2.25</td>
<td>2.5</td>
</tr>
<tr>
<td>.25</td>
<td>1.25</td>
<td>1</td>
<td>1.5625</td>
<td>2.25</td>
</tr>
<tr>
<td>.01</td>
<td>1.01</td>
<td>1</td>
<td>1.0201</td>
<td>2.01</td>
</tr>
</tbody>
</table>
Example: the derivative of $f(x) = x^2$ at 1

For $f(x) = x^2$ we have

<table>
<thead>
<tr>
<th>h</th>
<th>$1 + h$</th>
<th>$f(1)$</th>
<th>$f(1 + h)$</th>
<th>$\frac{f(1 + h) - f(1)}{h}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>.5</td>
<td>1.5</td>
<td>1</td>
<td>2.25</td>
<td>2.5</td>
</tr>
<tr>
<td>.25</td>
<td>1.25</td>
<td>1</td>
<td>1.5625</td>
<td>2.25</td>
</tr>
<tr>
<td>.01</td>
<td>1.01</td>
<td>1</td>
<td>1.0201</td>
<td>2.01</td>
</tr>
<tr>
<td>.001</td>
<td>1.001</td>
<td>1</td>
<td>1.002001</td>
<td>2.001</td>
</tr>
</tbody>
</table>

This suggests: when h approaches 0, then $\frac{f(1 + h) - f(1)}{h}$ approaches 2.
Example: the derivative of $f(x) = x^2$ at 1

$$f(1) = 1^2 = 1$$
Example: the derivative of $f(x) = x^2$ at 1

\[
f(1) = 1^2 = 1
\]

\[
\frac{f(1 + h) - f(1)}{h} = \frac{(1 + h)^2 - 1}{h}
\]
Example: the derivative of $f(x) = x^2$ at 1

\[
f(1) = 1^2 = 1
\]

\[
\frac{f(1 + h) - f(1)}{h} = \frac{(1 + h)^2 - 1}{h}
\]

\[
= \frac{1 + 2h + h^2 - 1}{h}
\]

\[
= 1 + 2h + h^2 - 1
\]

\[
(x + y)^2 = x^2 + 2xy + y^2
\]
Example: the derivative of \(f(x) = x^2 \) at 1

\[
f(1) = 1^2 = 1
\]

\[
\frac{f(1 + h) - f(1)}{h} = \frac{(1 + h)^2 - 1}{h}
\]

\[
= \frac{x + 2h + h^2 - x}{h}
\]

\[
= \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h} = 2.
\]

\[
(x + y)^2 = x^2 + 2xy + y^2
\]
Example: the derivative of $f(x) = x^2$ at 1

$$f(1) = 1^2 = 1$$

$$\frac{f(1 + h) - f(1)}{h} = \frac{(1 + h)^2 - 1}{h}$$

$$= \frac{x + 2h + h^2 - x}{h}$$

$$= \frac{2h + h^2}{h}$$

$$= 2 + h$$
Example: the derivative of \(f(x) = x^2 \) at 1

\[
f(1) = 1^2 = 1
\]

\[
\frac{f(1 + h) - f(1)}{h} = \frac{(1 + h)^2 - 1}{h}
\]

\[
= \frac{x + 2h + h^2 - x}{h}
\]

\[
= \frac{2h + h^2}{h}
\]

\[
= 2 + h
\]

\[(x + y)^2 = x^2 + 2xy + y^2\]
Example: the derivative of \(f(x) = x^2 \) at 1

\[
f(1) = 1^2 = 1
\]

\[
\frac{f(1 + h) - f(1)}{h} = \frac{(1 + h)^2 - 1}{h}
\]

\[
= \frac{x + 2h + h^2 - x}{h}
\]

\[
= \frac{2h + h^2}{h}
\]

\[
= 2 + h
\]

\[
f'(1) = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h} = 2.
\]
Example: the tangent line of $f(x) = x^2$ at $(1, 1)$

- The tangent line has slope $f'(1) = 2$ and passes through $(1, f(1)) = (1, 1)$, hence the tangent line is described by the equation

$$y = 2 \cdot (x - 1) + 1 = 2x - 1.$$
Example: the derivative of $f(x) = x^2$ at a

$$f(x) = x^2.$$
Example: the derivative of $f(x) = x^2$ at a

\[f(x) = x^2. \]

\[
\frac{f(a + h) - f(a)}{h} = \frac{(a + h)^2 - a^2}{h}
\]
Example: the derivative of $f(x) = x^2$ at a

\[f(x) = x^2. \]

\[
\frac{f(a + h) - f(a)}{h} = \frac{(a + h)^2 - a^2}{h}
\]

\[
= \frac{a^2 + 2ah + h^2 - a^2}{h}
\]

\[
= \frac{2ah + h^2}{h}
\]

\[
= 2a + h
\]

\[
(x + y)^2 = x^2 + 2xy + y^2
\]
Example: the derivative of $f(x) = x^2$ at a

$$f(x) = x^2.$$

$$\frac{f(a + h) - f(a)}{h} = \frac{(a + h)^2 - a^2}{h} = \frac{a^2 + 2ah + h^2 - a^2}{h}$$

$$(x + y)^2 = x^2 + 2xy + y^2$$
Example: the derivative of $f(x) = x^2$ at a

\[f(x) = x^2. \]

\[\frac{f(a + h) - f(a)}{h} = \frac{(a + h)^2 - a^2}{h} \]

\[= \frac{a^2 + 2ah + h^2 - a^2}{h} \]

\[= \frac{2ah + h^2}{h} \]

\[(x + y)^2 = x^2 + 2xy + y^2 \]
Example: the derivative of $f(x) = x^2$ at a

$$f(x) = x^2.$$

$$f(a + h) - f(a) = \frac{(a + h)^2 - a^2}{h}$$

$$= \frac{a^2 + 2ah + h^2 - a^2}{h}$$

$$= \frac{2ah + h^2}{h}$$

$$= 2a + h.$$
Example: the derivative of $f(x) = x^2$ at a

\[
f(x) = x^2.
\]

\[
\frac{f(a + h) - f(a)}{h} = \frac{(a + h)^2 - a^2}{h}
\]

\[
= \frac{a^2 + 2ah + h^2 - a^2}{h}
\]

\[
= \frac{2ah + h^2}{h}
\]

\[
= 2a + h.
\]

\[
f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = 2a.
\]
Example: the derivative of $f(x) = \sqrt{x}$ at a

$$f(a) = \sqrt{a}.$$
Example: the derivative of $f(x) = \sqrt{x}$ at a

\[
f(a) = \sqrt{a}.
\]

\[
\frac{f(a + h) - f(a)}{h} = \frac{\sqrt{a + h} - \sqrt{a}}{h}
\]
Example: the derivative of $f(x) = \sqrt{x}$ at a

$$f(a) = \sqrt{a}.$$

$$\frac{f(a + h) - f(a)}{h} = \frac{\sqrt{a + h} - \sqrt{a}}{h}$$

$$= \frac{(\sqrt{a + h} - \sqrt{a})(\sqrt{a + h} + \sqrt{a})}{h(\sqrt{a + h} + \sqrt{a})}$$
Example: the derivative of $f(x) = \sqrt{x}$ at a

$$f(a) = \sqrt{a}.$$

$$\frac{f(a + h) - f(a)}{h} = \frac{\sqrt{a + h} - \sqrt{a}}{h}$$

$$= \frac{(\sqrt{a + h} - \sqrt{a})(\sqrt{a + h} + \sqrt{a})}{h(\sqrt{a + h} + \sqrt{a})}$$

$$= \frac{(a + h) - a}{h(\sqrt{a + h} + \sqrt{a})}$$

$(x + y)(x - y) = x^2 - y^2$
Example: the derivative of \(f(x) = \sqrt{x} \) at \(a \)

\[
f(a) = \sqrt{a}.
\]

\[
\frac{f(a + h) - f(a)}{h} = \frac{\sqrt{a + h} - \sqrt{a}}{h}
\]

\[
= \frac{(\sqrt{a + h} - \sqrt{a})(\sqrt{a + h} + \sqrt{a})}{h(\sqrt{a + h} + \sqrt{a})}
\]

\[
= \frac{(\sqrt{a} + h) - \sqrt{a}}{h(\sqrt{a + h} + \sqrt{a})}
\]

\[
(x + y)(x - y) = x^2 - y^2
\]
Example: the derivative of \(f(x) = \sqrt{x} \) at \(a \)

\[
f(a) = \sqrt{a}.
\]

\[
\frac{f(a + h) - f(a)}{h} = \frac{\sqrt{a + h} - \sqrt{a}}{h}
\]

\[
= \frac{(\sqrt{a + h} - \sqrt{a})(\sqrt{a + h} + \sqrt{a})}{h(\sqrt{a + h} + \sqrt{a})}
\]

\[
= \frac{(\alpha + h) - \alpha}{h(\sqrt{a + h} + \sqrt{a})}
\]

\[
= \frac{h}{h(\sqrt{a + h} + \sqrt{a})}
\]

\[
(x + y)(x - y) = x^2 - y^2
\]
Example: the derivative of $f(x) = \sqrt{x}$ at a

$$f(a) = \sqrt{a}.$$

$$\frac{f(a + h) - f(a)}{h} = \frac{\sqrt{a + h} - \sqrt{a}}{h}$$

$$= \frac{(\sqrt{a + h} - \sqrt{a})(\sqrt{a + h} + \sqrt{a})}{h(\sqrt{a + h} + \sqrt{a})}$$

$$= \frac{(a + h) - a}{h(\sqrt{a + h} + \sqrt{a})}$$

$$= \frac{h}{h(\sqrt{a + h} + \sqrt{a})}$$

$$= \frac{1}{\sqrt{a + h} + \sqrt{a}}.$$

$(x + y)(x - y) = x^2 - y^2$
Example: the derivative of \(f(x) = \sqrt{x} \) at \(a \)

\[
f(a) = \sqrt{a}.
\]

\[
\frac{f(a + h) - f(a)}{h} = \frac{\sqrt{a + h} - \sqrt{a}}{h}
\]

\[
= \frac{(\sqrt{a + h} - \sqrt{a})(\sqrt{a + h} + \sqrt{a})}{h(\sqrt{a + h} + \sqrt{a})}
\]

\[
= \frac{\sqrt{a + h} - \sqrt{a}}{h(\sqrt{a + h} + \sqrt{a})}
\]

\[
= \frac{\sqrt{a + h} - \sqrt{a}}{h(\sqrt{a + h} + \sqrt{a})}
\]

\[
= \frac{1}{\sqrt{a + h} + \sqrt{a}}.
\]

\[
f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = \frac{1}{2\sqrt{a}}.
\]
Example: the derivative of \(f(x) = 1/x \) at \(a \neq 0 \)

\[
f(x) = \frac{1}{x} \quad (x \neq 0).
\]
Example: the derivative of $f(x) = 1/x$ at $a \neq 0$

$$f(x) = \frac{1}{x} \quad (x \neq 0).$$

$$\frac{f(a + h) - f(a)}{h} = \frac{1}{a + h} - \frac{1}{a} = \frac{1}{h} \left(\frac{1}{a + h} - \frac{1}{a} \right)$$
Example: the derivative of \(f(x) = 1/x \) at \(a \neq 0 \)

\[
f(x) = \frac{1}{x} \quad (x \neq 0).
\]

\[
\frac{f(a+h) - f(a)}{h} = \frac{1}{a+h} - \frac{1}{a} = \frac{1}{h} \left(\frac{1}{a+h} - \frac{1}{a} \right)
\]

\[
= \frac{1}{h} \left(\frac{a}{a(a+h)} - \frac{a+h}{a(a+h)} \right)
\]
Example: the derivative of $f(x) = 1/x$ at $a \neq 0$

$$f(x) = \frac{1}{x} \quad (x \neq 0).$$

$$\frac{f(a + h) - f(a)}{h} = \frac{1}{a + h} - \frac{1}{a} = \frac{1}{h} \left(\frac{1}{a + h} - \frac{1}{a} \right)$$

$$= \frac{1}{h} \left(\frac{a}{a(a + h)} - \frac{a + h}{a(a + h)} \right)$$

$$= \frac{1}{h} \left(\frac{a - (a + h)}{a(a + h)} \right)$$

$$= \frac{1}{h} \left(\frac{-h}{a(a + h)} \right)$$

$$= \frac{-1}{a(a + h)}.$$
Example: the derivative of $f(x) = 1/x$ at $a \neq 0$

\[
f(x) = \frac{1}{x} \quad (x \neq 0).
\]

\[
\frac{f(a + h) - f(a)}{h} = \frac{1}{a + h} - \frac{1}{a} = \frac{1}{h} \left(\frac{1}{a + h} - \frac{1}{a} \right)
\]

\[
= \frac{1}{h} \left(\frac{a}{a(a + h)} - \frac{a + h}{a(a + h)} \right)
\]

\[
= \frac{1}{h} \left(\frac{a - (a + h)}{a(a + h)} \right) = \frac{1}{h} \left(\frac{-h}{a(a + h)} \right)
\]

\[
f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = -\frac{1}{a^2}.
\]
Example: the derivative of $f(x) = 1/x$ at $a \neq 0$

$$f(x) = \frac{1}{x} \quad (x \neq 0).$$

$$\frac{f(a + h) - f(a)}{h} = \frac{1}{a + h} - \frac{1}{a} = \frac{1}{h} \left(\frac{1}{a + h} - \frac{1}{a} \right)$$

$$= \frac{1}{h} \left(\frac{a}{a(a + h)} - \frac{a + h}{a(a + h)} \right)$$

$$= \frac{1}{h} \left(\frac{a - (a + h)}{a(a + h)} \right) = \frac{1}{h} \left(\frac{-h}{a(a + h)} \right)$$

$$= -\frac{1}{a(a + h)}.$$
Example: the derivative of $f(x) = 1/x$ at $a \neq 0$

$$f(x) = \frac{1}{x} \quad (x \neq 0).$$

$$\frac{f(a + h) - f(a)}{h} = \frac{1}{a + h} - \frac{1}{a} = \frac{1}{h} \left(\frac{1}{a + h} - \frac{1}{a} \right)$$

$$= \frac{1}{h} \left(\frac{a}{a(a + h)} - \frac{a + h}{a(a + h)} \right)$$

$$= \frac{1}{h} \left(\frac{a - (a + h)}{a(a + h)} \right) = \frac{1}{h} \left(\frac{-h}{a(a + h)} \right)$$

$$= -\frac{1}{a(a + h)}.$$

$$f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = -\frac{1}{a^2}.$$
Assignment: IMM1 - Tutorial 3.2.
The derivative as a function

The **derivative of the function** \(f \) is the function \(f' \) whose value at \(x \) is

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}.
\]

- The function \(f \) is **differentiable at** \(x \) if \(f'(x) \) exists.
The derivative of the function f is the function f' whose value at x is

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}.$$

- The function f is **differentiable at** x if $f'(x)$ exists.
- The process of calculating f' is called **differentiation**.
The derivative as a function

The **derivative of the function** f is the function f' whose value at x is

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}.
\]

- The function f is **differentiable at** x if $f'(x)$ exists.
- The process of calculating f' is called **differentiation**.
- Alternative notations for the derivative are

\[
\frac{df}{dx}
\]

and

\[
\frac{d}{dx} f(x)
\]
Example: the derivative of $f(x) = x^2$

We already evaluated the derivative of f at a:

$$f'(a) = 2a.$$

Replace a by x: the derivative of f is the function $f'(x) = 2x$.

$$f(x) = x^2$$

$$f'(x) = 2x$$
Example: the derivative of $f(x) = \sqrt{x}$

The derivative of f at a is $f'(a) = \frac{1}{2\sqrt{a}}$.

Replace a by x: the derivative of f is the function $f'(x) = \frac{1}{2\sqrt{x}}$ ($x > 0$).
Example: the derivative of $f(x) = 1/x$

$$f(x) = \frac{1}{x}$$

$$f'(x) = -\frac{1}{x^2}$$

The derivative of f at a is $f'(a) = -\frac{1}{a^2}$.

Replace a by x: the derivative of f is the function $f'(x) = -\frac{1}{x^2}$ \quad (x \neq 0).
Warning: derivatives are not always defined!

The graph of \(f(x) = \begin{cases}
 x + 1 & \text{if } x \geq 0, \\
 -x & \text{if } x < 0
\end{cases} \) does not have a derivative at \(x = 0 \).

- A derivative does not exist at a point where the graph is discontinuous.
Warning: derivatives are not always defined!

\[\frac{-2 - 1}{1 - 1} \]

The graph of \(y = f(x) = |x| \) does not have a derivative at \(x = 0 \).

- A derivative does not exist at a point where the graph has a sharp spike (called a cusp).
Warning: derivatives are not always defined!

\[3.7 \]

\[-2 - 2 - 1 - 1 1 2 \]

\[f \]

\[f' \]

The graph of \(y = f(x) = \sqrt[3]{x} \) does not have a derivative at \(x = 0 \).

- A derivative does not exist at a point where the graph has a vertical tangent.
The function \(f(x) = \begin{cases} x^2 & \text{if } x \geq 0 \\ -x^2 & \text{if } x < 0 \end{cases} \) is differentiable at 0.

- Piecewise defined functions do not always pose problems.
The function $f(x) =$ \begin{align*}
\begin{cases}
 x^2 \sin \left(\frac{1}{x} \right) & \text{if } x \neq 0 \\
 0 & \text{if } x = 0
\end{cases}
\end{align*}$ is differentiable at 0.
Assignment: IMM1 - Tutorial 3.3.
Consider a moving object and assume that we know the traveled distance as a function of time $s(t)$.

- If the object moves from $s(t_A)$ to $s(t_B)$, the displacement is $s(t_B) - s(t_A)$.
- The average velocity over the interval (t_A, t_B) is the displacement per elapsed time.
 $$\frac{s(t_B) - s(t_A)}{t_B - t_A}.$$
Consider a moving object and assume that we know the traveled distance as a function of time $s(t)$.

- The **velocity at time** t_A is the limit of the average velocity over the interval (t_A, t_B) where t_B approaches t_A:

$$v(t_A) = \lim_{t_B \to t_A} \frac{s(t_B) - s(t_A)}{t_B - t_A}.$$
Consider a moving object and assume that we know the traveled distance as a function of time $s(t)$.

- The **velocity at time** t_A is the limit of the average velocity over the interval (t_A, t_B) where t_B approaches t_A:

 \[v(t_A) = \lim_{t_B \to t_A} \frac{s(t_B) - s(t_A)}{t_B - t_A}. \]
Consider a moving object and assume that we know the traveled distance as a function of time $s(t)$.

- The **velocity at time** t_A is the limit of the average velocity over the interval (t_A, t_B) where t_B approaches t_A:

$$v(t_A) = \lim_{t_B \to t_A} \frac{s(t_B) - s(t_A)}{t_B - t_A}.$$
Velocity

\[v(t_A) = \lim_{t_B \to t_A} \frac{s(t_B) - s(t_A)}{t_B - t_A}. \]

Define \(h = t_B - t_A \), then

- \(t_B = t_A + h \) and
- “\(t_B \to t_A \)” is equivalent to “\(h \to 0 \).”

\[v(t_A) = \lim_{t_B \to t_A} \frac{s(t_B) - s(t_A)}{t_B - t_A} \]

\[= \lim_{h \to 0} \frac{s(t_A + h) - s(t_A)}{h} = s'(t_A). \]
Velocity

\[v(t_A) = \lim_{t_B \to t_A} \frac{s(t_B) - s(t_A)}{t_B - t_A}. \]

Define \(h = t_B - t_A \), then

\[t_B = t_A + h \] and

\["t_B \to t_A" \] is equivalent to \("h \to 0" \).

\[v(t_A) = \lim_{t_B \to t_A} \frac{s(t_B) - s(t_A)}{t_B - t_A} \]

\[= \lim_{h \to 0} \frac{s(t_A + h) - s(t_A)}{h} = s'(t_A). \]

Velocity is the derivative of displacement.
Example: the motion of a rocket
Example: the motion of a rocket

Question: when did the rocket reach its highest point (apex)?
Example: the motion of a rocket

Question: when did the rocket reach its highest point (apex)?

Answer: at \(t \approx 8 \) seconds.
Example: the motion of a rocket

Question: for how many seconds did the engine burn?
Example: the motion of a rocket

Question: for how many seconds did the engine burn?

Answer: 2 seconds.
Example: the motion of a rocket

Question: when did the parachute open?

Answer: at $t = 10$ seconds.
Question: when did the parachute open?

Answer: at $t = 10$ seconds.
Example: the motion of a rocket

Question: what happens here?
Example: the motion of a rocket

<table>
<thead>
<tr>
<th>t (sec)</th>
<th>velocity (ft/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
</tr>
</tbody>
</table>

Question: what happens here?

Answer: after approximately 12 seconds the rocket reaches terminal velocity, which it keeps for about 8 seconds.
Example: the motion of a rocket

Question: what happens here?

Answer: the rocket hits the ground at \(t \approx 20 \) seconds.
Example: the motion of a rocket

Question: what happens here?

Answer: the rocket hits the ground at $t \approx 20$ seconds.
Example: the motion of a rocket

Question: what is the physical interpretation of the second derivative?
Example: the motion of a rocket

Question: what is the physical interpretation of the second derivative?

Answer: acceleration
The topic of the next lectures

It is tedious to compute derivatives by using the definition

\[f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]

How would you compute derivatives for these functions?

\[f(x) = \sqrt{1 + \sin^2(x)} \]

\[g(x) = (x^2 - 3x + 2)e^{-x^2} \]

\[h(x) = \frac{x \tan(x)}{x^3 + x^2 + x + 1} \]

We need a set of rules to compute derivatives more efficiently.
Assignment: IMM1 - Tutorial 3.4.